Single neuron dynamics and computation.

نویسندگان

  • Nicolas Brunel
  • Vincent Hakim
  • Magnus J E Richardson
چکیده

At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single Neuron Computation: From Dynamical System to Feature Detector

White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input and to determine how these features are combined to drive the system's spiking response. These methods have also been applied to characterize the input-output relations of single neu...

متن کامل

Inferring single-trial neural population dynamics using sequential auto-encoders

Neuroscience is experiencing a data revolution in which simultaneous recording of many hundreds or thousands of neurons is revealing structure in population activity that is not apparent from single-neuron responses. This structure is typically extracted from trial-averaged data. Single-trial analyses are challenging due to incomplete sampling of the neural population, trial-to-trial variabilit...

متن کامل

History-dependent multiple-time-scale dynamics in a single-neuron model.

History-dependent characteristic time scales in dynamics have been observed at several levels of organization in neural systems. Such dynamics can provide powerful means for computation and memory. At the level of the single neuron, several microscopic mechanisms, including ion channel kinetics, can support multiple-time-scale dynamics. How the temporally complex channel kinetics gives rise to ...

متن کامل

Exact Subthreshold Integration with Continuous Spike Times in Discrete-Time Neural Network Simulations

Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid ca...

متن کامل

Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in neurobiology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014